

INTERVENTI FORMATIVI IN MATERIA DI ECOREATI E DELITTI CONTRO L'AMBIENTE EX L. 68/2015 - CIG 9050193785 - CUP H31H16000030008 - 2021/D.01028

MODULO 10 - LE POSSIBILI CAUSE DI INQUINAMENTO AMBIENTALE – FOCUS SU "INQUINAMENTO DEL SUOLO E BONIFICA"

- DOTT.SSA GIUSEPPINA OLIVA -

LE POSSIBILI CAUSE DI INQUINAMENTO AMBIENTALE FOCUS SU "INQUINAMENTO DEL SUOLO E BONIFICA"

Tecnologie di bonifica

Dott.ing. G. Oliva goliva@unisa.it

Sommario

- ✓ Classificazione delle tecnologie di bonifica
- ✓ Applicabilità
- √ Selezione
- ✓ Livello effettivo di impiego
- ✓ Considerazioni sui costi

Criterio	Categoria
Ubicazione dell' intervento	In situ
Obicazione dell'intervento	Ex situ
_ , , , , , , , ,	Trasformazione dei contaminanti in composti non pericolosi e/o meno mobili
Tipologia di intervento	Asporto mediante escavazione
	Mobilizzazione e trasferimento in altre matrici
	Chimica
Natura dal processo	Fisica
Natura del processo	Biologica
	Termica
	Suolo
Matrice ambientale	Acqua
	Gas interstiziale

Classificazione delle tecnologie di bonifica Ubicazione dell'intervento

In base all'ubicazione dell'intervento i trattamenti di bonifica si distinguono in:

- ✓ Trattamenti in situ: il trattamento avviene senza l'escavazione del terreno contaminato o l'estrazione dell'acqua di falda.
- ✓ Trattamenti ex situ: il trattamento avviene con l'escavazione del terreno contaminato o l'estrazione dell'acqua di falda. Essi vengono, a loro volta, suddivisi in trattamenti:
 - on-site, se gli impianti sono installati in loco;
 - off-site, se gli impianti sono dislocati fuori dall'area di intervento.

Classificazione delle tecnologie di bonifica Ubicazione dell'intervento: trattamenti in situ

Vantaggi

- ✓ Ridotto impatto ambientale e conseguente migliore accettabilità da parte dell'opinione pubblica.
- ✓ Minori vincoli connessi alle infrastrutture esistenti (edifici, strade, tubazioni, serbatoi interrati etc.).
- ✓ Possibilità di non interrompere le attività produttive del sito in oggetto.
- ✓ Ridotta esposizione alle sostanze contaminanti, con conseguente riduzione del rischio igienico-sanitario.

Svantaggi

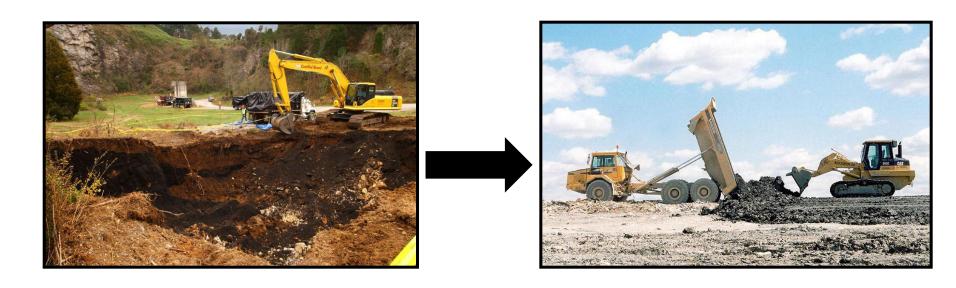
- ✓ Tempi di intervento prolungati e difficoltà nella stima della durata degli interventi.
- ✓ Difficoltà di controllo del livello di decontaminazione raggiunto per una valutazione dell'efficacia dell'intervento.
- ✓ Rischio di mobilizzazione e diffusione nell'ambiente di prodotti intermedi del processo di trattamento.

Classificazione delle tecnologie di bonifica Tipologia di intervento: Estrazione

Interventi finalizzati a **separare i contaminanti** dalle matrici ambientali (in situ o ex situ) per poi trattare la sola componente estratta o prevederne lo smaltimento in discarica.

Tra questi rientrano:

- ✓ Asporto mediante escavazione
- ✓ Mobilizzazione e trasferimento in altre matrici



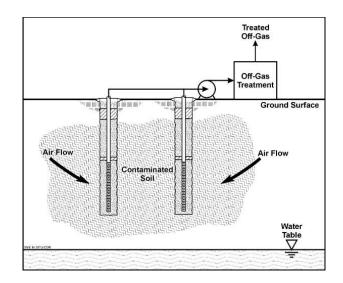
Classificazione delle tecnologie di bonifica Tipologia di intervento: asporto mediante escavazione

Escavazione e ricollocazione

Escavazione del terreno contaminato, allontanamento dal sito e ricollocazione in aree opportunamente confinate.

Tipologia di intervento: trattamenti di mobilizzazione

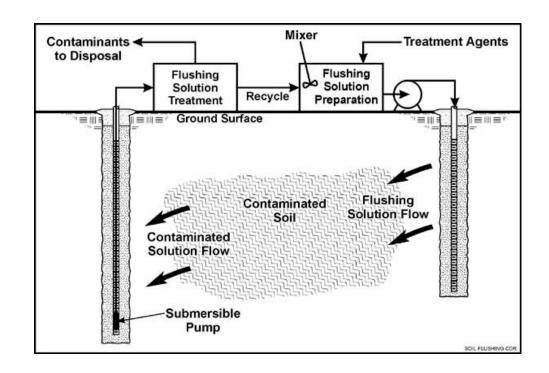
Trattamento dei contaminanti volto al loro trasferimento dal terreno o dalla falda ad un'altra matrice ambientale.


- ✓ Soil Vapor Extraction (SVE)
- ✓ Flushing
- ✓ Air sparging
- ✓ Lavaggio del suolo
- ✓ Desorbimento termico
- ✓ Pump and treat

Tipologia di intervento: trattamenti di mobilizzazione

Soil Vapor Extraction (SVE)

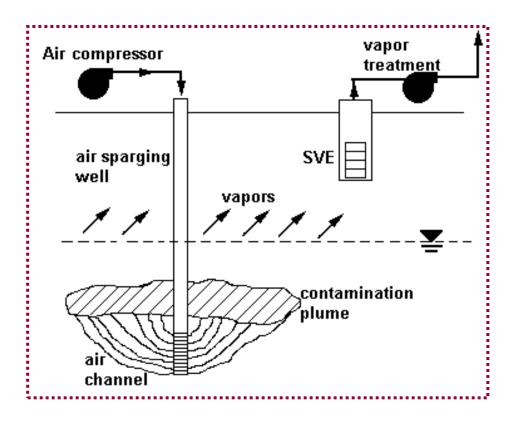
- ✓ Pozzi di estrazione posizionati nella zona parzialmente satura aspirano l'aria dal suolo circostante stimolandone il movimento attraverso i pori e richiamando nuova aria dalla superficie.
- ✓ Il processo può avvenire anche in condizioni controllate utilizzando pozzi di iniezione o una copertura impermeabile sulla superficie del suolo.
- ✓ Il movimento dell'aria causa la volatilizzazione dei contaminanti (rimozione per strippaggio).
- ✓ L'aria recuperata dal pozzo di estrazione può essere trattata prima dell'immissione in atmosfera.



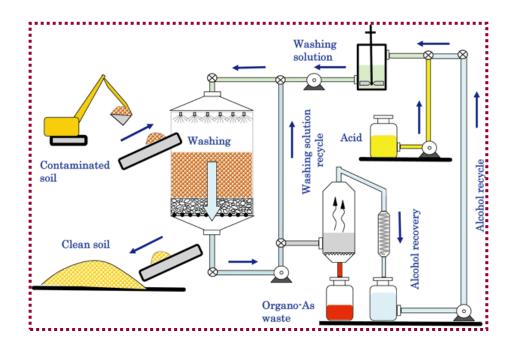
Tipologia di intervento: trattamenti di mobilizzazione

Soil Flushing

- ✓ Utilizza tecniche di pompaggio e trattamento per far circolare l'acqua nel sottosuolo.
- ✓ L'acqua reimmessa può essere in qualche modo condizionata allo scopo di stimolare processi fisicochimici (desorbimento a pH più basso) o la biodegradazione nella zona satura.



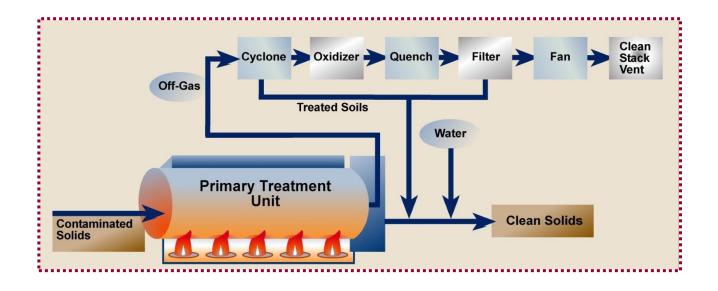
Tipologia di intervento: trattamenti di mobilizzazione


Air sparging

- ✓ Aria viene iniettata nella zona satura per strippare i contaminanti volatili.
- ✓ Al fine di completare la rimozione dei composti volatili che migrano nella zona non satura, il processo deve operare congiuntamente al SVE.

Soil washing

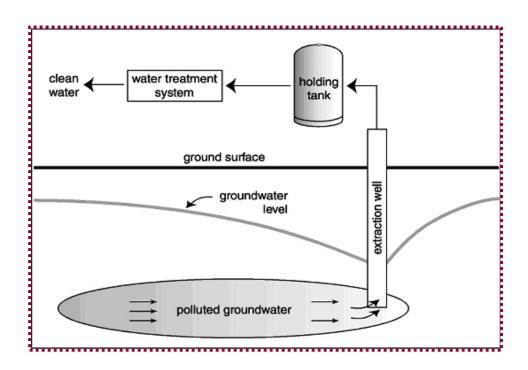
- ✓ È un processo fisico che prevede una separazione dimensionale ed il lavaggio dei contaminanti mediante soluzioni acquose.
- ✓ I processi fisici sono a volte integrati con processi chimici di estrazione.



Desorbimento termico

È un processo a due fasi che comprende:

- ✓ il trasferimento, per volatilizzazione, dei contaminanti dal suolo alla fase vapore;
- ✓ la distruzione o rimozione dei contaminanti dalla corrente gassosa.



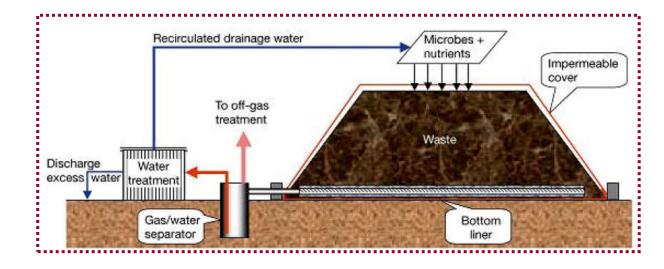
Tipologia di intervento: trattamenti di mobilizzazione

Pump and Treat

- ✓ Si riferisce all'estrazione e al successivo trattamento di acqua di falda.
- ✓ L'acqua estratta può essere scaricata in corso d'acqua, fognatura previo trattamento depurativo, utilizzata in cicli produttivi o reimmessa in falda previo trattamento ai soli fini della bonifica (art. 243, D.Lgs 152/06).
- ✓ Trattamenti tipici includono lo strippaggio o l'adsorbimento su carboni attivi.

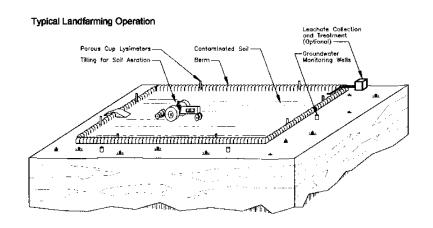
Si tratta di interventi finalizzati a *trasformare il contaminante* in composti meno tossici per l'uomo e per l'ambiente oppure meno mobili, attraverso processi di degradazione biologica o reazioni chimico-fisiche.

Sono trattamenti di trasformazione:


- ✓ Biopile e landfarming
- √ Bioreattori
- ✓ Bioventing/Biosparging
- ✓ Incenerimento
- ✓ Trattamenti chimici
- ✓ Barriere reattive

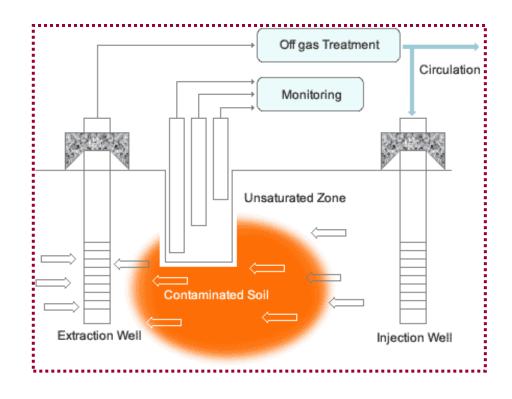
Tipologia di intervento: trattamenti di trasformazione

Biopile


Suolo contaminato proveniente da uno scavo, ammucchiato e additivato con nutrienti, aria ed acqua senza essere sottoposto a rivoltamenti meccanici.

Landfarming

- ✓ Nelle applicazioni più semplici il suolo contaminato viene disperso su una superficie fino ad ottenere uno spessore di 0,5 – 1,5 m.
- ✓ Il terreno viene poi mescolato regolarmente per migliorare la struttura e l'approvvigionamento di ossigeno.
- ✓ A volte viene aggiunta acqua per garantire il giusto contenuto di umidità e per fornire nutrienti inorganici.
- ✓ In genere sul fondo è posizionata una membrana per consentire la raccolta del percolato.


Bioreattori

- ✓ Il suolo contaminato (secco o in sospensione in soluzione acquosa) è trattato in un recipiente a cui vengono aggiunti nutrienti, aria, acqua e microrganismi in quantità appropriate per ottenere la degradazione biologica dei contaminanti.
- ✓ I bioreattori possono essere utilizzati anche per trattare acque di falda.

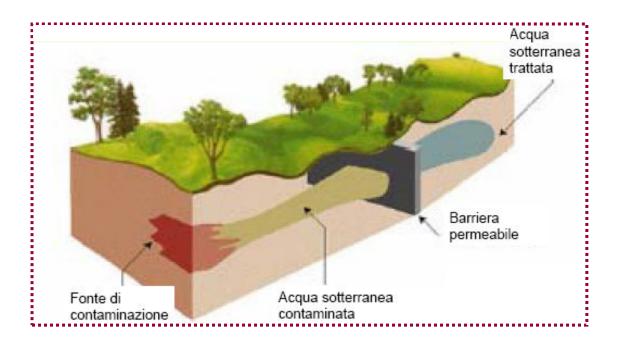
Bioventing/Biosparging

- ✓ Il passaggio di aria o di altri gas attraverso il suolo stimola la degradazione biologica dei contaminanti organici unitamente alla rimozione in fase gassosa (soil vapour extraction, SVE)
- ✓ Il bioventing si applica ai terreni parzialmente saturi al fine di degradare per via aerobica i contaminanti organici biodegradabili più leggeri.
- ✓ In zona satura, il trattamento corrispondente prende il nome di biosparing.

Termodistruzione

Si tratta di interventi che sfruttano a temperature tra i 600 ed i 2000° C, in grado di determinare la vetrificazione del terreno.

Tali trattamenti possono essere eseguiti in situ o ex-situ, e sono idonei per le matrici con elevato contenuto di composti organici di elevata pericolosità e stabilità termica, nonché, per l'immobilizzazione di composti inorganici (metalli pesanti).



Trattamento chimico

- ✓ Trattamento del sottosuolo o delle acque sotterranee mediante sostanze chimiche che, reagendo con i contaminati presenti, formano prodotti innocui per l'ambiente e per la salute pubblica.
- ✓ Le sostanze chimiche generalmente impiegate per il trattamento dei suoli e delle acque contaminate sono:
 - composti ossidanti;
 - composti riducenti.

Barriere reattive

Una barriera reattiva permeabile (BRP) è una zona di trattamento passivo *in situ* realizzata con materiale reattivo che degrada o immobilizza i contaminanti quando l'acqua della falda contaminata passa attraverso la barriera.

Classificazione delle tecnologie di bonifica Tipologia di intervento

Attenuazione naturale

È la combinazione di tutti i processi che possono agire naturalmente sul contaminante nel sottosuolo senza l'intervento dell'uomo.

Tecnologie di bonifica

Criteri di applicabilità: la matrice da trattare

Tecnica	Matrice a cui è applicabile			
Techica	Suolo	Acque sotterranee		
Estrazione di vapore	X			
Air sparging	x	X		
Ossidazione chimica	x	X		
Fitorisanamento	X			
Biorisanamento	x	X		
Barriere reattive		X		
Desorbimento termico	x			
Incenerimento	X			
Pump and treat		X		

Tecnologie di bonifica

Criteri di applicabilità: i parametri operativi

- ✓ Tipologia, concentrazione e distribuzione spaziale del contaminante.
- ✓ Caratteristiche della matrice contaminata, in termini di contenuto di carbonio organico, pH, potenziale redox, distribuzione granulometrica, umidità, nutrienti ...
- ✓ Condizioni specifiche del sito (dimensione, ubicazione, destinazione d' uso).
- ✓ Obiettivo della bonifica, condizioni operative del processo, vincoli economici.
- ✓ Impatto ambientale.

Tecnologie di bonifica

Criteri di applicabilità: le caratteristiche della matrice

TECNOLOGIA PARAMETRO	Bioventing	Estrazione di vapori	Air s parging	Biolpile o Land farming	Lavaggio fisico	Lavaggio chimico	Desorbimento termico
Distribuzione granulometrica	•	•	•	•	•	•	•
Contenuto di argilla/carbonio org.		•	•	•	•	•	•
Capacità di scambio ionico					•	•	
Gradiente idraulico falda			•				
Fluttuazione livello di falda	•	•	•				
Profondità acquifero			•		Ī		
Umidità	•	•					•
рН	•		•	•	•		
Potenziale di ossidoriduzione			•	•	•	•	
Nutrienti	•		•	•			
Concentrazione biomassa adattata	•		•	•			

Selezione delle tecnologie di bonifica Criteri di scelta

- ✓ Affidabilità della tecnologia e precedenti applicazioni documentate
- ✓ Disponibilità sul mercato di mezzi e apparecchiature
- ✓ Complessità del processo ed eventuale necessità di integrazione con altre tecnologie.
- ✓ *Vincoli* esistenti (accessibilità del sito, disponibilità di aree, necessità di servizi ausiliari, presenza di edifici e/o altre strutture ...)
- ✓ Necessità di trattamento e smaltimento di residui/emissioni
- ✓ Durata delle operazioni di bonifica
- ✓ Impatti sulle eventuali attività produttive in corso
- ✓ Rischi di esposizione del personale addetto all'intervento e della popolazione circostante.
- ✓ Impatti sull'ambiente circostante (traffico, rumore, vibrazioni, emissioni, odori, polveri ...)
- ✓ Limitazioni all'*utilizzo* futuro dei terreni.
- ✓ Necessità di monitoraggio a lungo termine.
- ✓ Costi dell'intervento e delle fasi di controllo e monitoraggio
- √ Vincoli amministrativi (eventuali autorizzazioni)

Selezione delle tecnologie di bonifica Criteri di scelta

- ✓ II **D. Lgs. 152/2006**, Parte IV Titolo V, all'**allegato 3**, propone "*I criteri* generali per la selezione ed esecuzione degli interventi di bonifica e ripristino ambientale, di messa in sicurezza (d'urgenza, operativa e permanente), nonché per l'individuazione delle migliori tecniche d'intervento a costi sopportabili".
- ✓ L'allegato specifica, inoltre, che nel Progetto di bonifica dovranno essere
 comparate diverse tecniche e dovrà dimostrarsi che la scelta risponda ai
 requisiti sopra elencati.
- ✓ Qualora non risulti possibile procedere alla rimozione degli inquinanti pur applicando le **Migliori Tecnologie Disponibili** a costi sopportabili si passa alla messa in sicurezza permanente.

Selezione delle tecnologie di bonifica Criteri di scelta

Per la scelta della migliore tipologia di intervento bisogna tenere in conto numerose variabili, quali in particolare:

- ✓ il livello di protezione dell'ambiente che sarebbe desiderabile conseguire;
- √ l'esistenza o meno di tecniche affidabili in grado di conseguire e mantenere nel tempo detti livelli di protezione;
- ✓ l'entità dei costi di progettazione, realizzazione, gestione monitoraggio, da sostenere nelle varie fasi dell'intervento.

Si fa quindi riferimento alla definizione di *Migliori Tecniche Disponibili* contenuta nella Direttiva 96/61/CE e recepita dal nostro ordinamento, in cui si specifica che si intende per:

- ✓ Tecniche: sia le tecniche impiegate sia le modalità di progettazione, costruzione, manutenzione, esercizio e chiusura dell'impianto.
- ✓ **Disponibili:** tecniche sviluppate su una scala che ne consenta l'applicabilità in condizioni tecnicamente ed economicamente valide [...] a cui il gestore può avere accesso a condizioni ragionevoli.
- ✓ Migliori: tecniche più efficaci per ottenere un elevato livello di protezione dell'ambiente nel suo complesso.

Selezione delle tecnologie di bonifica

Matrice di screening

	т	М	ı
Cuala andimenti	<u>'</u>	171	_ •
Suolo, sedimenti			
- trattamento biologico in situ	u		
- Bioventing	<u>•</u>	\odot	<u> </u>
- Bioremediation	<u>@</u>	<u> </u>	<u> </u>
- Phytoremediation		<u> </u>	<u> </u>
- trattamento chimico-fisico i	n situ	u _	
- Ossidazione chimica	<u></u>		<u></u>
- Ossidazione elettrochimica	<u> </u>	<u>_</u>	<u> </u>
- Separazione elettrocinetica	L <u>-</u>	<u> </u>	<u></u>
- Soil Flushing	<u>-</u> _		 ;;;-
Soil Vapour Extraction Solidificazione/Stabilizzazione	- 		
- trattamento termico in situ			
- Trattamento termico	0	•	(2)
- trattamento biologico ex sit	u		
- Biopile	<u> </u>		
- Compostaggio	<u> </u>	<u> </u>	<u> </u>
- Landfarming - Bioreattori		_	<u> </u>
- trattamento chimico-fisico e	ex sit		
Estrazione chimica Ossidazione/riduzione chimica	<u>-</u> _		 -
	<u>- %</u> -		
- Soil Washing - Solidificazione/Stabilizzazione	- X -		
	0		
- trattamento termico ex situ - Incenerimento/Pirolisi			
- Incenerimento/Pirolisi - Desorbimento termico	<u>- 8</u> -		
- altro - Scavo e smaltimento in discarica	-		
- Scavo e smaitimento in discarica		0	

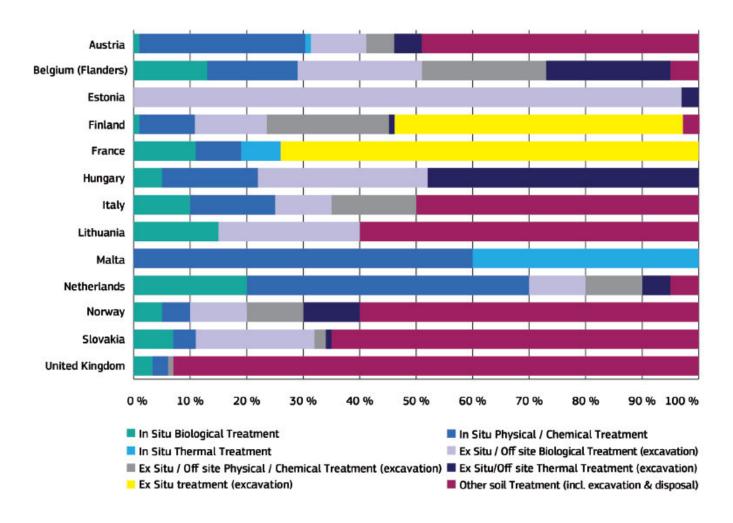
	Т	М	ı
	<u> </u>		<u>'</u>
Acque sotterranee, super	ficia	lli	
- trattamento biologico in situ	u		
- Bioremediation	•	(2)	•
- Attenuazione naturale monitorata	•	(1)	•
- Phytoremediation		<u> </u>	•
- trattamento chimico-fisico i	n sit	u	
- Air Sparging	<u> </u>	•	<u> </u>
- Ossidazione chimica	•		•
- Ossidazione elettrochimica	<u> </u>	<u> </u>	•
- In-Well Air Stripping	<u> </u>	<u> </u>	•
- Dual/Multi Phase Extraction	<u> </u>	<u> </u>	
- Barriere permeabili reattive	•	<u> </u>	
- trattamento biologico ex sit	u		
- Bioreattori	(1)	(1)	•
- Lagunaggi	◆	<u> </u>	•
- trattamento chimico-fisico e	ex sit	:u	
- Processi di ossidazione avanzata	(4)	(2)	•
- Air Stripping		(2)	•
- Carboni attivi	(4)	(2)	<u>•</u>
- Piump and treat		<u> </u>	
- Scambio ionico	(4)	(2)	•

		Giudizio		U = Buono	(1) = Medio	Basso
		suolo in situ		Meno di 1 anno	Da 1 a 3 anni	Oltre 3 anni
	T	Tempi	suolo ex situ	Meno di 0,5 anno	Da 0,5 a 1 anno	Oltre 1 anno
			acque	Meno di 3 anni	Da 3 a 10 anni	Oltre 10 anni
N/I		Necessità di mani	itenzione/	Necessita di un basso grado di	Necessita di un medio grado di	Necessita di un alto grado di
	M	monitoraggio a lungo termine		manutenzione	manutenzione	manutenzione
ſ	П	Impatti a breve e lungo termine		Bassi impatti sulle risorse	Medi impatti sulle risorse	Alti impatti sulle risorse
L	ı	sulle risorse naturali		naturali/Alta sostenibilità	naturali/Medi sostenibilità	naturali/Bassa sostenibilità

🔷 = Il livello di efficienza dipende dallo specifico contaminante, dalle condizioni sito specifiche e dalla progettazione

[modificata da ISPRA, 2008]

Livello di applicazione delle tecnologie di bonifica

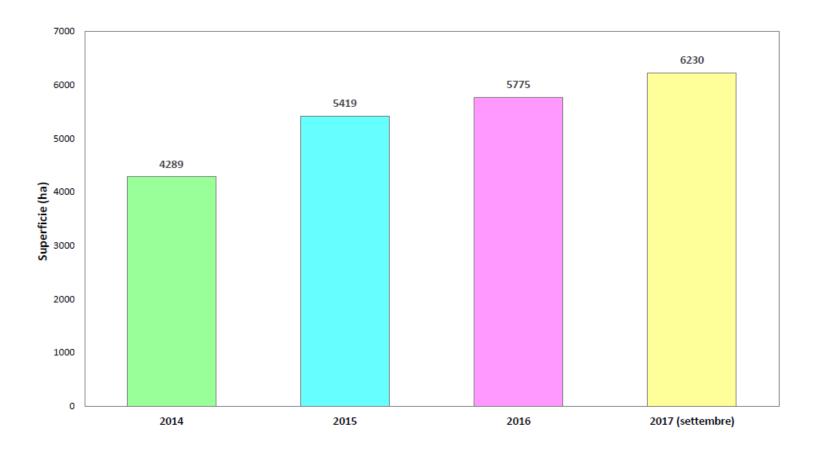

Technology	Total (FY12-14)	Percent Source Decision Documents
In Situ Treatment	44	23%
Soil vapor extraction	14	7%
Chemical treatment	12	6%
Thermal treatment	10	5%
Bioremediation	7	4%
Solidification/stabilization	7	4%
Cap (amended, in situ)	3	2%
Soil amendments	2	1%
Fracturing	1	1%
Multi-phase extraction	1	1%
Phytoremediation	1	1%
Ex Situ Treatment	55	29%
Physical separation	27	14%
Recycling	12	6%
Solidification/stabilization	5	3%
Thermal treatment	4	2%
Chemical treatment	3	2%
Source P&T (leachate)	3	2%
Bioremediation	1	1%
Constructed treatment wetland	1	1%
Soil vapor extraction	1	1%
Unspecified ex situ treatment (off-site)	7	4%
Unspecified ex situ treatment (on-site)	6	3%
Containment or Disposal	131	70%
Off-site disposal	86	46%
On-site containment	80	43%
Drainage and erosion control	34	18%
Vertical engineered barrier	8	4%

[US EPA (2017) Superfund Remedy Report]

Livello di applicazione delle tecnologie di bonifica

Le tecnologie di bonifica applicate in Europa

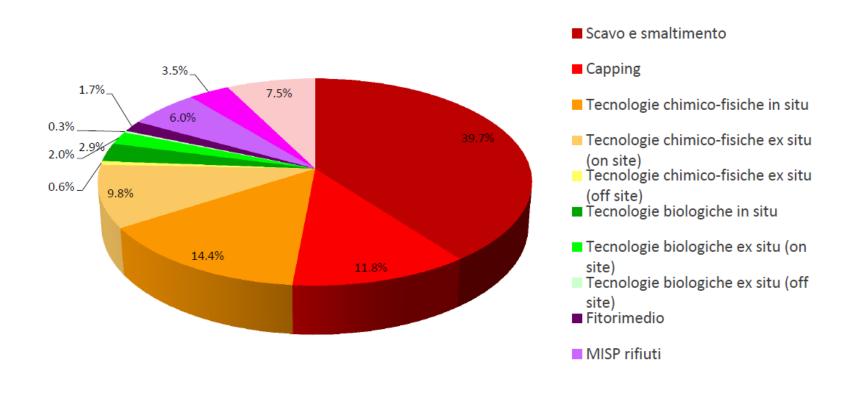
[European Commission Joint Research Centre, 2014]



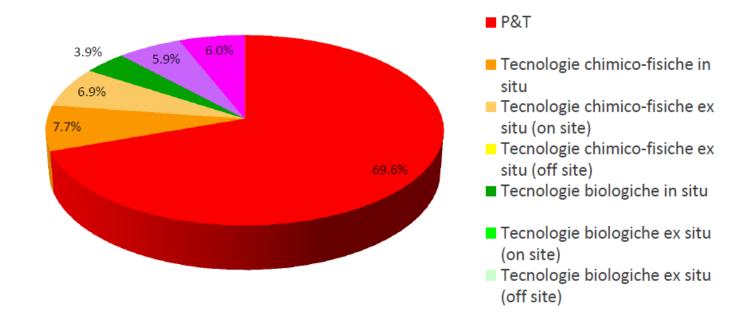
Livello di applicazione delle tecnologie di bonifica La situazione Europea

- ✓ L'interesse per un rapido recupero e riutilizzo delle aree contaminate ha favorito il ricorso ad operazioni off site con realizzazione di piattaforme centralizzate per il trattamento.
- ✓ Fra i processi ex situ prevalgono quelli biologici (biopile, compostaggio, landfarming), soprattutto per il trattamento di idrocarburi, e quelli chimico-fisici; meno applicati quelli termici (ad eccezione dell'Austria).
- ✓ Cresce l'applicazione dei trattamenti in situ come SVE, air sparging, bioventing.

Livello di applicazione delle tecnologie di bonifica


Procedimenti conclusi in Italia

NB: dati cumulati


Livello di applicazione delle tecnologie di bonifica

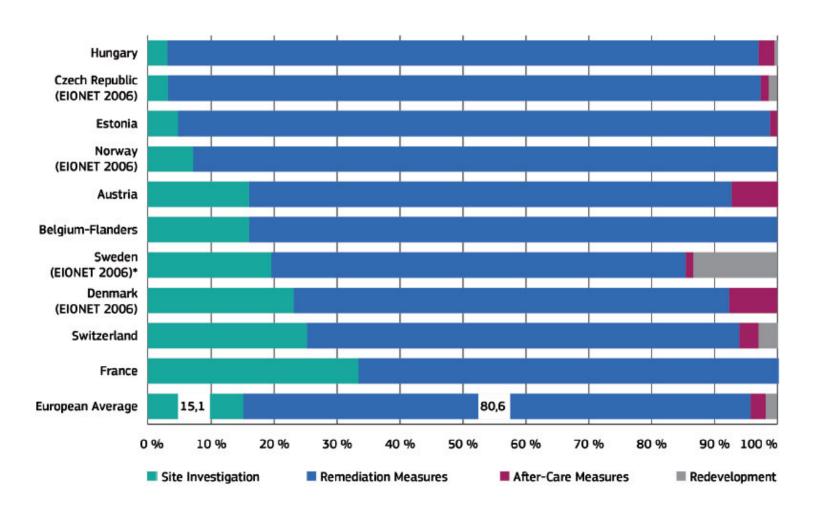
Tecnologie applicate su suolo e sedimenti

Livello di applicazione delle tecnologie di bonifica

Tecnologie applicate su acque

I costi

- ✓ La valutazione economica dei costi di bonifica è difficile a causa di una serie di incertezze riconducibile ad una documentazione non adeguata degli interventi di bonifica.
- ✓ Il costo complessivo di un intervento dipende da:
 - Costo di progettazione
 - Costo di investimento
 - Costo di trattamento, che include, a sua volta: i) voci di costo correlate ad operazioni complementari (escavazione e smaltimento dei residui); ii) eventuali oneri per il trattamento di flussi gassosi o liquidi derivanti dalle operazioni di risanamento; iii) applicazione congiunta o sequenziale di diverse tecnologie
 - Costo di monitoraggio


I costi unitari di alcuni trattamenti in Europa

Tipologia di intercente	Costo unitario				
Tipologia di intervento	Clarinet, 2008	Beretta, 2012			
Trattamenti biologici	60-250 €/ton	-			
Bioventing	-	15-90 €/m³			
Biopile	-	50-150 €/m³			
Biosparging	-	40-240 €/m³			
Estrazione chimica	200-300 €/ton	-			
Soil Vapor Extraction	-	10-100 €/m³			
Desorbimento termico	60-80 €/ton	80-350 €/ton			
Solidificazione/stabilizzazione	-	60/200 €/m³			
Pump & treat	-	50-300 €/m³			
Soil washing	50-60 €/ton	100-300 €/m³			
Smaltimento in discarica	30-400 €/ton	20-400 €/m³			

I costi unitari di alcuni trattamenti ex situ in Europa

Tecnologia	IR	В	DK	SF	I	N	S	UK
	[€/ton]							
Biorisanamento	30-140		25-35	60-200	75-600	20-200	10-350	
Lavaggio	30-150			30-90	80-240	40-250	25-350	
Chimico-fisico	30-110	30-50				40-250		
Desorbimento termico	60-330			40-205	80-240		55-90	50-210
Smaltimento in discarica	30-110			150-230	100-400			

I costi Ripartizione dei costi di intervento

[European Commission Joint Research Centre, 2014]

Stima dei costi Modelli empirici

✓ Un modello per la stima dei costi di bonifica è stato proposto da Kaufman et al. (2005) ed è stato calibrato su 79 siti internazionali (tra cui anche siti italiani):

Costo di bonifica = rischio totale × estensione del pennacchio × massa di contaminante

- ✓ Il rischio totale dipende da:
 - problematiche di rilascio nell'ambiente del contaminante
 - rischi in superficie connessi al contesto geologico e al tipo di attività
 - aspetti associati al tipo di suolo e di acquifero e alla soggiacenza della falda

Stima dei costi

Modelli empirici

✓ Il fattore di rischio del contaminante (CRF) dipende da diversi parametri reperibili sperimentalmente ed in letteratura:

$$CRF = P/(T \times M)$$

dove: T è la tossicità derivata dal data-base IRIS (USEPA, 1997 e successive revisioni ed integrazioni);

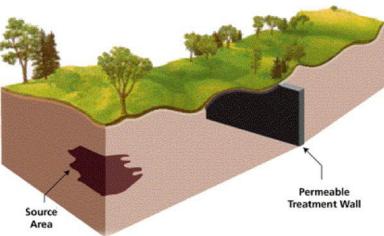
 $M = H \times R$ è la mobilità, pari al prodotto tra la costante di Henry (H), indicativa della volatilità e il fattore di ritardo (R), legato all'adsorbimento;

P è la persistenza (derivata da data-base Howard et al. 1991, USEPA 1996 e 2000).

- ✓ Il CRF viene calcolato per ogni composto che è stato individuato nel sito di studio.
- ✓ Il rischio di superficie viene calcolato distinguendo l'uso del suolo nelle categorie tradizionali (verde pubblico e privato, residenziale, commerciale, industriale).

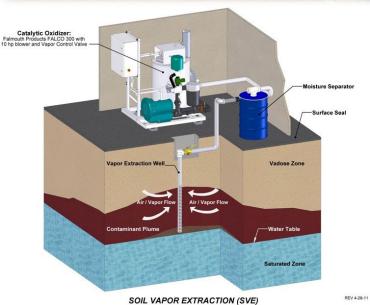
Stima dei costi Modelli empirici

- ✓ I parametri relativi al sottosuolo sono pesati con un approccio derivato dal metodo DRASTIC (Aller et al., 1987), in cui sono considerati 7 parametri (soggiacenza della falda, importanza dell'acquifero, area di ricarica e di deflusso, caratteristiche tessiturali dell'acquifero, velocità di flusso, captazioni di acqua potabile).
- ✓ La massa e l'estensione della contaminazione sono infine derivate dalla caratterizzazione del sito.
- ✓ Sulla base di tale parametrizzazione viene derivata la seguente relazione empirica relativa ai costi:


log(costo) = 5.107 + 0.4949 log(rischio totale)

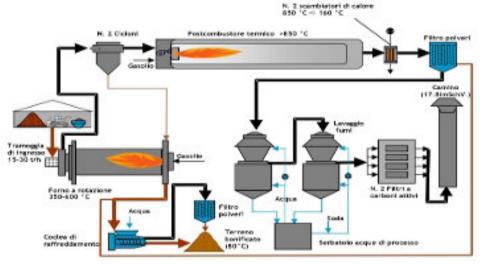
Interventi di bonifica

Barriere reattive permeabili

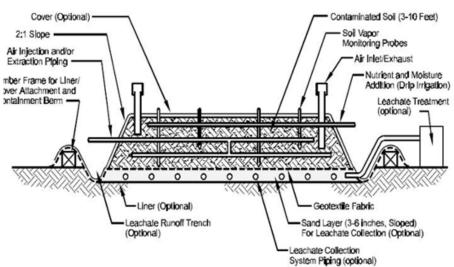

Solidificazione/Stabilizzazi one

Interventi di bonifica

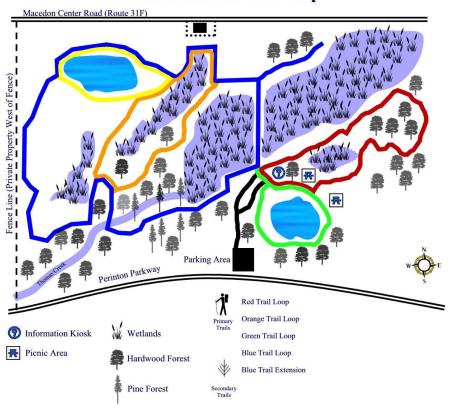
Soil Vapor Extraction (SVE)



Interventi di bonifica


Desorbimento termico

Biopile



The Trails At High Acres Information and Trail Map

Discarica High Acres (Perinton Town, New York)

Discarica Mountain Gate (Los Angeles, California)

Discarica Shuen Wan (Hong Kong)

Considerazioni di sintesi

- ✓ Grandi risorse economiche destinate alla bonifica ed al ripristino dei siti contaminati.
- ✓ Elevato numero di siti in Italia, maggiormente aree industriali al centro nord, discariche non controllate al sud. Interessanti spazi professionali.
- ✓ Necessità dell'applicazione di procedure effettive di Analisi di rischio.
- ✓ Ridotta competenza tecnica contrapposta a un rischio elevato per la salute pubblica.
- ✓ Complessità delle attività di campionamento ed analisi su matrici solide.
- ✓ Necessità di formazione specifica multidisciplinare dei tecnici progettisti ed addetti al controllo ed alla verifica degli interventi.

